Tuesday 8 January 2013

Summary notes of Molecular Biology processes



DNA REPLICATION
Types of DNA replication:
A.      Prokaryotes
B.      Eukaryotes
Phases of DNA replication: these 3 phases occur for all polymerization processes:
1.       Initiation
2.       Elongation
3.       Termination
DNA replication proteins (the main players in this process)
-          Topoisomerase/DNA Gyrase?
-          Helicase
-          Single Stranded Binding Proteins (SSBP or just SSB)
-          Sliding/DNA Clamp and the Clamp loader
a.       Prokaryotes: β-clamp
b.      Eukaryotes:  Proliferating cell nuclear antigen (PCNA) – sliding clamp for eukaryotes and archaea and Replication factor C (RFC) is the clamp loader
-          Primase
-          DNA POLYMERASE (replicative DNA polymerases:
a.       bacteria: III 
b.      eukaryotes:  δ leading strand, ε lagging, α replacing RNA primer with DNA?, γ mitochondrial replication)
-          DNA Ligase
-          Telomerase (eukaryotes)
-          Flap endonuclease (FEN-1) (eukaryotes)
-           

Other players:
a.       Prokaryotes
-          Prokaryotic proteins/factors and subunits for polymerase III holoenzyme???: DnaA, DnaB, DnaC, DnaE, DnaG, DnaH, DnaI, DnaN, DnaQ, DnaS, DnaX
b.      Eukaryotes
-          Histone acetylase - +ve charge on lysine residues relaxes superstructure/deacetylase??? .  
-          Mini-chromosome maintenance (MCM): 6 MCM subunits MCM 2-7 that form a complex (eukaryotes)
-          Ribonuclease: RNase H
-          Replication protein A (RPA)
-          Origin Recognition Complex (ORC) (eukaryotes)

Random terms, concepts and players:
-          Proofreading
-          Processivity
-          Okazaki Fragments
-          High-fidelity
-          Replication bubbles/eyes
-          RNA primer
-          Leading strand and lagging strand (remember though that left and right of the origin, replication is )
-          Origins: ori: oriC in E.Coli of AT 13 nucleotides and in eukar
-          Replication fork
-          Pre-replication complex (in pro- and eu-):
-          Licensing factor
-          Telomere:  protect chromosome ends 6-mer repeats of TTAGGG nucleotides
-          Primosome
-          Klenow fragment
-          Replisome (bact-)
-          Chromatin during replication (eu-): half of H3, H4 go to one daughter strand and half to the other: parental histone segregation  ASF1. Chromatin assembly factor 1 (CAF-1) deliver new histones to the replication fork
-          Trombone model of the lagging strand
-          Termination: when replication forks meet in circular dna, Ter site that is bound by Tus protein. In eukaryotes it goes to the end except from the end problem of lagging strand

Features:
-          Semiconservative: not conservative nor dispersive
a.       Messelson and Stahl experiment: Solution with N-15, leave to multiply E.Coli, put a small sample into N-14. Take a small sample of extract DNA add CsCl 1.7g/cm3 then centrifuge and show from the pattern that is conservative. Important elegant experiment in history need that need to know
-          Bidirectional: J. Cairns in 1963 autoradioraphy and θ structure in bacteria
-          Semi-discontinuous: continuous on leading – although due to repairs there are some ‘’gaps’’, discontinuous on lagging
-          One origin in prokaryotes, multiple origins in eukaryotes (thousands firing at different times)
-          Pulse-chase experiment?? For  RNA transcription???
-          C-G three hydrogen bonds and A-T two; complementary strands

Replication of organelle DNA
-          Mitochondrial
Replication of plasmids/bacteriophages/viroid:      Rolling circle replication: unidirectional

Regulation of DNA rep.:
-          Prokaryotes: RIDA regulation inactive DnaA, SeqA,
-          Eukaryotes: cyclin?


DNA polymerases:
-          7 families: A, B, C, D, X, Y, RT (reverse transcriptase)
-          bacteria: 5 DNA polymerases; I II III IV V   
-          eukaryotes: 14 DNA polymerases:  α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, Rev1

DNA polymerase III: HolA, HolB, HolC, HolD, HolE
All polymerases can extend strand at the 3’ end because they require a OH to add the nucleotide so for this reason primase adds a short stretch of RNA (primer) to allow polymerase to take it from there.
-          5’->3’ synthesis but read in 3’->5’ way